Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 778
1.
Sci Rep ; 14(1): 10555, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719902

Heat stress exposure in intermittent heat waves and subsequent exposure during war theaters pose a clinical challenge that can lead to multi-organ dysfunction and long-term complications in the elderly. Using an aged mouse model and high-throughput sequencing, this study investigated the molecular dynamics of the liver-brain connection during heat stress exposure. Distinctive gene expression patterns induced by periodic heat stress emerged in both brain and liver tissues. An altered transcriptome profile showed heat stress-induced altered acute phase response pathways, causing neural, hepatic, and systemic inflammation and impaired synaptic plasticity. Results also demonstrated that proinflammatory molecules such as S100B, IL-17, IL-33, and neurological disease signaling pathways were upregulated, while protective pathways like aryl hydrocarbon receptor signaling were downregulated. In parallel, Rantes, IRF7, NOD1/2, TREM1, and hepatic injury signaling pathways were upregulated. Furthermore, current research identified Orosomucoid 2 (ORM2) in the liver as one of the mediators of the liver-brain axis due to heat exposure. In conclusion, the transcriptome profiling in elderly heat-stressed mice revealed a coordinated network of liver-brain axis pathways with increased hepatic ORM2 secretion, possibly due to gut inflammation and dysbiosis. The above secretion of ORM2 may impact the brain through a leaky blood-brain barrier, thus emphasizing intricate multi-organ crosstalk.


Brain , Gene Expression Profiling , Liver , Animals , Mice , Liver/metabolism , Brain/metabolism , Male , Transcriptome , Brain-Gut Axis , Heat-Shock Response/genetics , Mice, Inbred C57BL , Signal Transduction , Aging/genetics , Aging/metabolism
2.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727306

Parkinson's disease (PD) is recognized as the second most prevalent primary chronic neurodegenerative disorder of the central nervous system. Clinically, PD is characterized as a movement disorder, exhibiting an incidence and mortality rate that is increasing faster than any other neurological condition. In recent years, there has been a growing interest concerning the role of the gut microbiota in the etiology and pathophysiology of PD. The establishment of a brain-gut microbiota axis is now real, with evidence denoting a bidirectional communication between the brain and the gut microbiota through metabolic, immune, neuronal, and endocrine mechanisms and pathways. Among these, the vagus nerve represents the most direct form of communication between the brain and the gut. Given the potential interactions between bacteria and drugs, it has been observed that the therapies for PD can have an impact on the composition of the microbiota. Therefore, in the scope of the present review, we will discuss the current understanding of gut microbiota on PD and whether this may be a new paradigm for treating this devastating disease.


Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/microbiology , Parkinson Disease/therapy , Brain/microbiology , Brain/pathology , Brain-Gut Axis/physiology , Animals
3.
J Neuroinflammation ; 21(1): 124, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730498

Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.


Anti-Inflammatory Agents , Brain Injuries, Traumatic , Brain-Gut Axis , Humans , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism , Brain-Gut Axis/physiology , Brain-Gut Axis/drug effects , Animals , Anti-Inflammatory Agents/therapeutic use , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology
4.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731995

The gut-brain axis is a bidirectional relationship between the microbiota and the brain; genes related to the brain and gut synaptic formation are similar. Research on the causal effects of gut microbiota on human behavior, brain development, and function, as well as the underlying molecular processes, has emerged in recent decades. Probiotics have been shown in several trials to help reduce anxiety and depressive symptoms. Because of this, probiotic combinations have been tested in in vitro models to see whether they might modulate the gut and alleviate depression and anxiety. Therefore, we sought to determine whether a novel formulation might affect the pathways controlling anxiety and depression states and alter gut barrier activities in a 3D model without having harmful side effects. Our findings indicate that B. bifidum novaBBF7 10 mg/mL, B. longum novaBLG2 5 mg/mL, and L. paracasei TJB8 10 mg/mL may influence the intestinal barrier and enhance the synthesis of short-chain fatty acids. Additionally, the probiotics studied did not cause neuronal damage and, in combination, exert a protective effect against the condition of anxiety and depression triggered by L-Glutamate. All these findings show that probiotics can affect gut function to alter the pathways underlying anxiety and depression.


Anxiety , Depression , Gastrointestinal Microbiome , Probiotics , Anxiety/therapy , Humans , Gastrointestinal Microbiome/drug effects , Brain-Gut Axis , Dietary Supplements
5.
Food Res Int ; 186: 114404, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729686

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.


Autism Spectrum Disorder , Brain-Gut Axis , Flavonoids , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Humans , Autism Spectrum Disorder/microbiology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/diet therapy , Flavonoids/pharmacology , Diet , Dysbiosis , Brain/metabolism , Animals , Antioxidants/pharmacology
6.
Gut Microbes ; 16(1): 2351520, 2024.
Article En | MEDLINE | ID: mdl-38717832

Links between the gut microbiota and human health have been supported throughout numerous studies, such as the development of neurological disease disorders. This link is referred to as the "microbiota-gut-brain axis" and is the focus of an emerging field of research. Microbial-derived metabolites and gut and neuro-immunological metabolites regulate this axis in health and many diseases. Indeed, assessing these signals, whether induced by microbial metabolites or neuro-immune mediators, could significantly increase our knowledge of the microbiota-gut-brain axis. However, this will require the development of appropriate techniques and potential models. Methods for studying the induced signals originating from the microbiota remain crucial in this field. This review discusses the methods and techniques available for studies of microbiota-gut-brain interactions. We highlight several much-debated elements of these methodologies, including the widely used in vivo and in vitro models, their implications, and perspectives in the field based on a systematic review of PubMed. Applications of various animal models (zebrafish, mouse, canine, rat, rabbit) to microbiota-gut-brain axis research with practical examples of in vitro methods and innovative approaches to studying gut-brain communications are highlighted. In particular, we extensively discuss the potential of "organ-on-a-chip" devices and their applications in this field. Overall, this review sheds light on the most widely used models and methods, guiding researchers in the rational choice of strategies for studies of microbiota-gut-brain interactions.


Brain-Gut Axis , Gastrointestinal Microbiome , Host Microbial Interactions , Animals , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Humans , Brain/microbiology , Brain/metabolism , Brain/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Models, Animal , Mice
7.
Rev Esc Enferm USP ; 58: e20230365, 2024.
Article En, Pt | MEDLINE | ID: mdl-38743953

OBJECTIVE: To map the evidence in the literature about the relationship between gastrointestinal symptoms and COVID-19 in the pediatric population. METHOD: This is a scoping review following the recommendations of the Joanna Briggs Institute and PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. The search was carried out on the following bases: Embase, Google Scholar, PubMed, Scopus, LILACS, CINAHL, Scielo, Web of Science and Virtual Health Library Portal, between July and August 2023. Original studies available in full, in any language, were included. RESULTS: Ten studies were chosen that pointed to three premises: (1) the ACE2 receptor is found in the epithelial cells of the gastrointestinal tract; (2) gastrointestinal symptoms are mediated by stress and infection is justified by the gut-brain axis; (3) it develops the process of Multisystem Inflammatory Syndrome in children, affecting the gastrointestinal tract. CONCLUSION: The synthesis of evidence provided three assumptions which guide the origin of gastrointestinal symptoms. The identification of gastrointestinal symptoms in children affected by COVID-19 can assist in the clinical approach and management of care and treatments.


COVID-19 , Gastrointestinal Diseases , Humans , COVID-19/complications , Gastrointestinal Diseases/virology , Gastrointestinal Diseases/epidemiology , Child , Systemic Inflammatory Response Syndrome/physiopathology , Systemic Inflammatory Response Syndrome/diagnosis , Brain-Gut Axis/physiology , Angiotensin-Converting Enzyme 2/metabolism
8.
Biol Res ; 57(1): 23, 2024 May 06.
Article En | MEDLINE | ID: mdl-38705984

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.


Anxiety , Brain-Gut Axis , Diet, High-Fat , Gastrointestinal Microbiome , Animals , Male , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Anxiety/microbiology , Brain-Gut Axis/physiology , Rats , Rats, Sprague-Dawley , Obesity/microbiology , Obesity/psychology , Obesity/metabolism , Signal Transduction/physiology , Behavior, Animal/physiology
9.
Nutrients ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732599

In this study, a systematic review of randomized clinical trials conducted from January 2000 to December 2023 was performed to examine the efficacy of psychobiotics-probiotics beneficial to mental health via the gut-brain axis-in adults with psychiatric and cognitive disorders. Out of the 51 studies involving 3353 patients where half received psychobiotics, there was a notably high measurement of effectiveness specifically in the treatment of depression symptoms. Most participants were older and female, with treatments commonly utilizing strains of Lactobacillus and Bifidobacteria over periods ranging from 4 to 24 weeks. Although there was a general agreement on the effectiveness of psychobiotics, the variability in treatment approaches and clinical presentations limits the comparability and generalization of the findings. This underscores the need for more personalized treatment optimization and a deeper investigation into the mechanisms through which psychobiotics act. The research corroborates the therapeutic potential of psychobiotics and represents progress in the management of psychiatric and cognitive disorders.


Mental Disorders , Probiotics , Randomized Controlled Trials as Topic , Humans , Probiotics/therapeutic use , Female , Mental Disorders/drug therapy , Mental Disorders/therapy , Cognition Disorders/drug therapy , Male , Treatment Outcome , Adult , Brain-Gut Axis/drug effects , Middle Aged , Gastrointestinal Microbiome/drug effects , Lactobacillus , Aged , Bifidobacterium
10.
CNS Neurosci Ther ; 30(4): e14704, 2024 04.
Article En | MEDLINE | ID: mdl-38584341

BACKGROUND: The gut microbiome is composed of various microorganisms such as bacteria, fungi, and protozoa, and constitutes an important part of the human gut. Its composition is closely related to human health and disease. Alzheimer's disease (AD) is a neurodegenerative disease whose underlying mechanism has not been fully elucidated. Recent research has shown that there are significant differences in the gut microbiota between AD patients and healthy individuals. Changes in the composition of gut microbiota may lead to the development of harmful factors associated with AD. In addition, the gut microbiota may play a role in the development and progression of AD through the gut-brain axis. However, the exact nature of this relationship has not been fully understood. AIMS: This review will elucidate the types and functions of gut microbiota and their relationship with AD and explore in depth the potential mechanisms of gut microbiota in the occurrence of AD and the prospects for treatment strategies. METHODS: Reviewed literature from PubMed and Web of Science using key terminologies related to AD and the gut microbiome. RESULTS: Research indicates that the gut microbiota can directly or indirectly influence the occurrence and progression of AD through metabolites, endotoxins, and the vagus nerve. DISCUSSION: This review discusses the future challenges and research directions regarding the gut microbiota in AD. CONCLUSION: While many unresolved issues remain regarding the gut microbiota and AD, the feasibility and immense potential of treating AD by modulating the gut microbiota are evident.


Alzheimer Disease , Gastrointestinal Microbiome , Neurodegenerative Diseases , Humans , Alzheimer Disease/therapy , Brain-Gut Axis , PubMed , Brain
11.
J Agric Food Chem ; 72(18): 10406-10419, 2024 May 08.
Article En | MEDLINE | ID: mdl-38659208

The impact of leptin resistance on intestinal mucosal barrier integrity, appetite regulation, and hepatic lipid metabolism through the microbiota-gut-brain-liver axis has yet to be determined. Water extract of Phyllanthus emblica L. fruit (WEPE) and its bioactive compound gallic acid (GA) effectively alleviated methylglyoxal (MG)-triggered leptin resistance in vitro. Therefore, this study investigated how WEPE and GA intervention relieve leptin resistance-associated dysfunction in the intestinal mucosa, appetite, and lipid accumulation through the microbiota-gut-brain-liver axis in high-fat diet (HFD)-fed rats. The results showed that WEPE and GA significantly reduced tissues (jejunum, brain, and liver) MG-evoked leptin resistance, malondialdehyde (MDA), proinflammatory cytokines, SOCS3, orexigenic neuropeptides, and lipid accumulation through increasing leptin receptor, tight junction proteins, antimicrobial peptides, anorexigenic neuropeptides, excretion of fecal triglyceride (TG), and short-chain fatty acids (SCFAs) via a positive correlation with the Allobaculum and Bifidobacterium microbiota. These novel findings suggest that WEPE holds the potential as a functional food ingredient for alleviating obesity and its complications.


Brain , Diet, High-Fat , Fruit , Gastrointestinal Microbiome , Homeostasis , Leptin , Liver , Obesity , Phyllanthus emblica , Plant Extracts , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Rats , Male , Obesity/metabolism , Obesity/drug therapy , Obesity/microbiology , Fruit/chemistry , Liver/metabolism , Liver/drug effects , Diet, High-Fat/adverse effects , Leptin/metabolism , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Phyllanthus emblica/chemistry , Brain/metabolism , Brain/drug effects , Homeostasis/drug effects , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Appetite/drug effects , Brain-Gut Axis/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification
12.
Neurosci Biobehav Rev ; 161: 105653, 2024 Jun.
Article En | MEDLINE | ID: mdl-38582194

The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.


Biological Evolution , Gastrointestinal Microbiome , Social Class , Humans , Gastrointestinal Microbiome/physiology , Animals , Brain-Gut Axis/physiology , Mental Disorders/microbiology , Mental Health , Low Socioeconomic Status
13.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38674014

With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.


Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Brain-Gut Axis , Animals , Genome-Wide Association Study , Bacteria/genetics , Bacteria/metabolism
14.
Int Immunopharmacol ; 132: 112030, 2024 May 10.
Article En | MEDLINE | ID: mdl-38603861

Mast cells (MCs) play a significant role in various diseases, and their activation and degranulation can trigger inflammatory responses and barrier damage. Several studies have indicated that vagus nerve stimulation (VNS) exerts ameliorates neurological injury, and regulates gut MC degranulation. However, there is limited research on the modulatory effect of VNS on MCs in both the gut and brain in brain ischemia-reperfusion (I/R) injury in this process. We aim to develop a minimally invasive, targeted and convenient VNS approach to assess the impact of VNS and to clarify the relationship between VNS and MCs on the prognosis of acute ischemic stroke. We utilized middle cerebral artery occlusion/reperfusion (MCAO/r) to induce brain I/R injury. After the experiment, the motor function and neurofunctional impairments of the rats were detected, and the gastrointestinal function, blood-brain barrier (BBB) and intestinal barrier damage, and systemic and local inflammation were evaluated by Nissl, TTC staining, Evans blue, immunofluorescence staining, transmission electron microscopy, western blot assays, ELISA, and fecal 16S rRNA sequencing methods. Our research confirmed that our minimally invasive VNS method is a novel approach for stimulating the vagus nerve. VNS alleviated motor deficits and gastrointestinal dysfunction while also suppressing intestinal and neuroinflammation. Additionally, VNS ameliorated gut microbiota dysbiosis in rats. Furthermore, our analysis indicated that VNS reduces chymase secretion by modulating MCs degranulation and improves intestinal and BBB damage. Our results showed that VNS treatment can alleviate the damage of BBB and colonic barrier after cerebral I/R by modulating mast cell degranulation, and alleviates systemic inflammatory responses.


Blood-Brain Barrier , Brain-Gut Axis , Cell Degranulation , Gastrointestinal Microbiome , Ischemic Stroke , Mast Cells , Rats, Sprague-Dawley , Reperfusion Injury , Vagus Nerve Stimulation , Animals , Mast Cells/immunology , Vagus Nerve Stimulation/methods , Male , Rats , Reperfusion Injury/therapy , Reperfusion Injury/immunology , Ischemic Stroke/therapy , Brain-Gut Axis/physiology , Infarction, Middle Cerebral Artery/therapy , Disease Models, Animal , Brain Ischemia/therapy , Brain Ischemia/immunology
15.
Toxicology ; 504: 153802, 2024 May.
Article En | MEDLINE | ID: mdl-38604439

Etomidate (ETO) is used as an anesthetic in surgery, but it is being abused in some populations. The damage caused by long-term intake of ETO to intestinal and brain functions is not yet clear, and it remains to be determined whether the drug affects the central nervous system through the gut-brain axis. This study aimed to investigate the neurotoxic and gastrointestinal effects of ETO at doses of 1 mg/kg and 3 mg/kg in mice over 14 consecutive days. The results showed that long-term injection of ETO led to drug resistance in mice, affecting their innate preference for darkness and possibly inducing dependence on ETO. The levels of 5-hydroxytryptamine in the brain, serum, and colon decreased by 37%, 51%, and 42% respectively, while the levels of γ-aminobutyric acid reduced by 38%, 52%, and 41% respectively. H&E staining revealed that ETO reduced goblet cells in the colon and damaged the intestinal barrier. The expression of tight junction-related genes Claudin4 and ZO-1 was downregulated. The intestinal flora changed, the abundance of Akkermansia and Lactobacillus decreased by 33% and 14%, respectively, while Klebsiella increased by 18%. TUNEL results showed that high-dose ETO increased apoptotic cells in the brain. The expression of Claudin1 in the brain was downregulated. Untargeted metabolomics analysis of the colon and brain indicated that ETO caused abnormalities in glycerophospholipid metabolism. Abnormal lipid metabolism might lead to the production or accumulation of lipotoxic metabolites, causing central nervous system diseases. ETO induced changes in the intestinal flora and metabolism, further affecting the central nervous system through the gut-brain axis. The study unveiled the detrimental effects on the brain and gastrointestinal system resulting from long-term intake of ETO, which holds significant implications for comprehending the adverse impact of ETO abuse on human health.


Etomidate , Gastrointestinal Microbiome , Homeostasis , Animals , Mice , Male , Homeostasis/drug effects , Etomidate/toxicity , Gastrointestinal Microbiome/drug effects , Brain/drug effects , Brain/metabolism , Intestines/drug effects , Brain-Gut Axis/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Serotonin/metabolism
16.
Chemosphere ; 356: 141971, 2024 May.
Article En | MEDLINE | ID: mdl-38604519

The environmental prevalence of antibiotic residues poses a potential threat to gut health and may thereby disrupt brain function through the microbiota-gut-brain axis. However, little is currently known about the impacts of antibiotics on gut health and neurotransmitters along the microbiota-gut-brain axis in fish species. Taking enrofloxacin (ENR) as a representative, the impacts of antibiotic exposure on the gut structural integrity, intestinal microenvironment, and neurotransmitters along the microbiota-gut-brain axis were evaluated in zebrafish in this study. Data obtained demonstrated that exposure of zebrafish to 28-day environmentally realistic levels of ENR (6 and 60 µg/L) generally resulted in marked elevation of two intestinal integrity biomarkers (diamine oxidase (DAO) and malondialdehyde (MDA), upregulation of genes that encode inter-epithelial tight junction proteins, and histological alterations in gut as well as increase of lipopolysaccharide (LPS) in plasma, indicating an evident impairment of the structural integrity of gut. Moreover, in addition to significantly altered neurotransmitters, markedly higher levels of LPS while less amount of two short-chain fatty acids (SCFAs), namely acetic acid and valeric acid, were detected in the gut of ENR-exposed zebrafish, suggesting a disruption of gut microenvironment upon ENR exposure. Along with corresponding changes detected in gut, significant disruption of neurotransmitters in brain indicated by marked alterations in the contents of neurotransmitters, the activity of acetylcholin esterase (AChE), and the expression of neurotransmitter-related genes were also observed. These findings suggest exposure to environmental antibiotic residues may impair gut health and disrupt neurotransmitters along the microbiota-gut-brain axis in zebrafish. Considering the prevalence of antibiotic residues in environments and the high homology of zebrafish to other vertebrates including human, the risk of antibiotic exposure to the health of wild animals as well as human deserves more attention.


Anti-Bacterial Agents , Enrofloxacin , Gastrointestinal Microbiome , Neurotransmitter Agents , Zebrafish , Animals , Neurotransmitter Agents/metabolism , Gastrointestinal Microbiome/drug effects , Enrofloxacin/toxicity , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Water Pollutants, Chemical/toxicity , Brain/drug effects , Brain/metabolism , Malondialdehyde/metabolism , Lipopolysaccharides
17.
J Agric Food Chem ; 72(17): 9795-9806, 2024 May 01.
Article En | MEDLINE | ID: mdl-38608178

Gut microbiota can influence cognitive ability via the gut-brain axis. Lactiplantibacillus plantarum MWFLp-182 (L. plantarum MWFLp-182) was obtained from feces of long-living individuals and could exert marked antioxidant ability. Interestingly, this strain reduced the D-galactose-induced impaired cognitive ability in BALB/c mice. To comprehensively elucidate the underlying mechanism, we evaluated the colonization, antioxidant, and anti-inflammatory activities of L. plantarum MWFLp-182, along with the expression of potential genes associated with cognitive ability influenced and gut microbiota. L. plantarum MWFLp-182 enhanced the expression of anti-inflammatory cytokines, reduced the expression of proinflammatory cytokines, and increased tight junction protein expression in the colon. Moreover, L. plantarum MWFLp-182 could modify the gut microbiota. Notably, treatment with L. plantarum MWFLp-182 upregulated the expression of postsynaptic density protein-95, nuclear factor erythroid 2-related factor, nerve growth factor, superoxide dismutase, and brain-derived neurotrophic factor/neuronal nuclei, while downregulating the expression of bcl-2-associated X and malondialdehyde in the hippocampus and upregulating short-chain fatty acids against D-galactose-induced mouse brain deficits. Accordingly, L. plantarum MWFLp-182 could improve cognitive ability in a D-galactose-inducing mouse model.


Brain-Gut Axis , Cognition , Galactose , Gastrointestinal Microbiome , Mice, Inbred BALB C , Probiotics , Animals , Gastrointestinal Microbiome/drug effects , Mice , Cognition/drug effects , Probiotics/administration & dosage , Probiotics/pharmacology , Male , Humans , Aging , Brain/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Lactobacillus plantarum , Disease Models, Animal , Lactobacillaceae/genetics , Lactobacillaceae/metabolism
18.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38612620

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent data highlight similarities between neurodegenerative diseases, including PD and type 2 diabetes mellitus (T2DM), suggesting a crucial interplay between the gut-brain axis. Glucagon-like peptide-1 receptor (GLP-1R) agonists, known for their use in T2DM treatment, are currently extensively studied as novel PD modifying agents. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles and clinical trials regarding GLP-1R agonists and PD published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Many data on animal models and preclinical studies show that GLP1-R agonists can restore dopamine levels, inhibit dopaminergic loss, attenuate neuronal degeneration and alleviate motor and non-motor features of PD. Evidence from clinical studies is also very promising, enhancing the possibility of adding GLP1-R agonists to the current armamentarium of drugs available for PD treatment.


Diabetes Mellitus, Type 2 , Parkinson Disease , Animals , Parkinson Disease/drug therapy , Glucagon-Like Peptide-1 Receptor Agonists , Diabetes Mellitus, Type 2/drug therapy , Brain-Gut Axis , Databases, Factual , Dopamine
19.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38612834

The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices. Dysbiosis can lead to various gastrointestinal and immune-related issues in animals, impacting overall health and productivity. Extracellular vesicles (EVs), particularly exosomes derived from gut microbiota, play a crucial role in intercellular communication, influencing host health by transporting bioactive molecules across barriers like the intestinal and brain barriers. Dysregulation of the gut-brain axis has implications for various disorders in animals, highlighting the potential role of microbiota-derived EVs in disease progression. Therapeutic approaches to modulate gut microbiota, such as probiotics, prebiotics, microbial transplants, and phage therapy, offer promising strategies for enhancing animal health and performance. Studies investigating the effects of phage therapy on gut microbiota composition have shown promising results, with potential implications for improving animal health and food safety in poultry production systems. Understanding the complex interactions between host ecology, gut microbiota, and EVs provides valuable insights into the mechanisms underlying host-microbe interactions and their impact on animal health and productivity. Further research in this field is essential for developing effective therapeutic interventions and management strategies to promote gut health and overall well-being in animals.


Exosomes , Extracellular Vesicles , Gastrointestinal Microbiome , Microbiota , Animals , Brain-Gut Axis
20.
Nutrients ; 16(7)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38613087

The microbiota-gut-brain (MGB) axis is a complex communication network linking the gut, microbiota, and brain, influencing various aspects of health and disease. Dysbiosis, a disturbance in the gut microbiome equilibrium, can significantly impact the MGB axis, leading to alterations in microbial composition and function. Emerging evidence highlights the connection between microbiota alterations and neurological and psychiatric disorders, including depression. This review explores the potential of psychobiotics in managing depressive disorders, emphasizing their role in restoring microbial balance and influencing the MGB axis. Psychobiotics exhibit positive effects on the intestinal barrier, immune response, cortisol levels, and the hypothalamic-pituitary-adrenal (HPA) axis. Studies suggest that probiotics may serve as an adjunct therapy for depression, especially in treatment-resistant cases. This review discusses key findings from studies on psychobiotics interventions, emphasizing their impact on the gut-brain axis and mental health. The increasing acceptance of the expanded concept of the MGB axis underscores the importance of microorganisms in mental well-being. As our understanding of the microbiome's role in health and disease grows, probiotics emerge as promising agents for addressing mental health issues, providing new avenues for therapeutic interventions in depressive disorders.


Brain-Gut Axis , Gastrointestinal Microbiome , Humans , Depression/therapy , Brain , Dysbiosis
...